

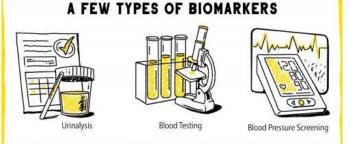
Introduction to clinical biomarker strategy

May 15th 2024

Binodh DeSilva

What is a Biomarker?

A characteristic (e.g., molecule) that is objectively measured to evaluate:


- Healthy biologic processes establish a healthy baseline
- Pathologic processes distinguishes disease from healthy
- Biologic responses to a therapeutic intervention for example, a characteristic that moves towards healthy under therapeutic pressure

Biomarkers may also serve as an alternative to a clinical endpoint – these are called surrogate biomarkers

Biomarkers include a wide range of biochemical moieties in a diversity of tissues (matrices), and also include physical measurements

Based on FDA definition

Importance of Biomarkers in Rare Diseases

"In rare diseases, often the **population size and heterogeneity**, the **nature of the disease** and the **limited historical clinical data** can make traditional studies with **clinical endpoints** difficult or impossible to conduct." Kakkis et al., Orphanet journal of rare diseases (2015)10:16

- The nature of rare diseases frequently includes:
 - **Pediatric indications**, in which clinical measures may be more subjective / challenging to capture and some (e.g., MRI, certain wearables, PROs) may not be practical
 - Long, slow & progressive periods with no clinically evident changes (e.g., neurodevelopmental disorders (NDD), bone developmental, musculo-skeletal disorders), leading to long clinical studies
 - Leveraging novel drug mechanisms, with variable degrees of biological validation
- Relying on clinical endpoints of how a patient "feels, functions or survives" can be impractical in these cases

Biomarkers address these challenges, providing critical insight into the effects of a drug on the underlying disease mechanism, and connecting this with the therapeutic response in the individual patient

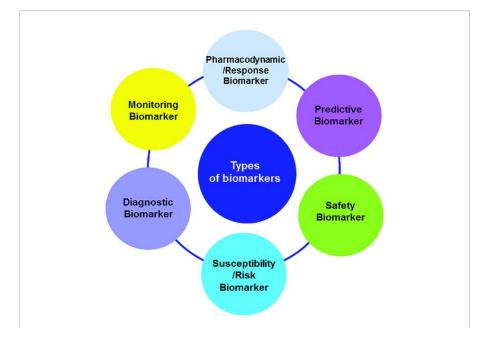
Biomarker needs vary with programs, criteria are constant

Biomarker Criteria

Kakkis et al., 2016, Nature Biotechnology

- 1. Biomarker has direct relationship to important disease process
- 2. Changes are specific to changes in the clinical disease biology
- 3. Stable over time
- 4. Can be reliably measured with adequate sensitivity & specificity
- 5. Sampling compartment (e.g., urine) predicts disease compartment/tissue (e.g., difficult to sample organ such as liver)
- 6. Clinical intermediate endpoints (clinical physiological measures) are relevant to major clinical problem

Feasibility, clinical relevance and clinical utility are critical criteria for biomarker development


Context of use (COU) defines Biomarker Strategy

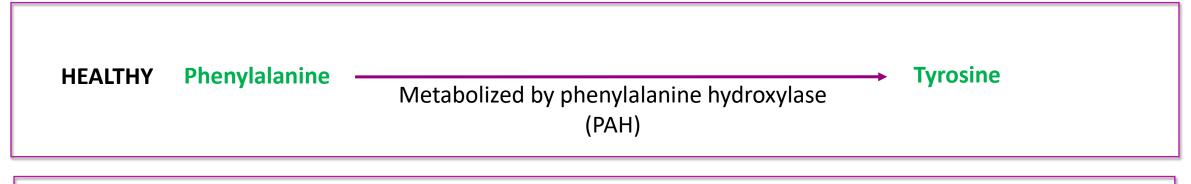
COU encompasses the biomarker category (e.g., pharmacodynamic) and the intended

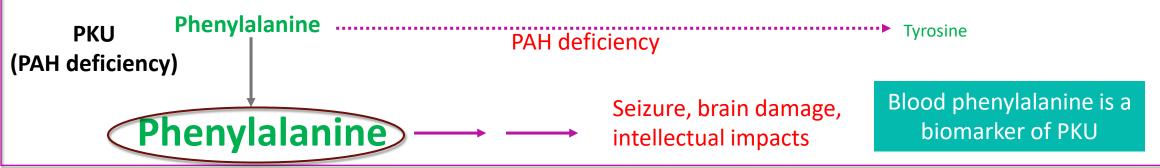
use in a drug development program

Examples of particular use in rare diseases are:

- Inclusion / exclusion criteria for clinical studies
- Support for dose selection in clinical study
- Proof of mechanism PD response
- Surrogate endpoint
- Stop study treatment due to safety concern

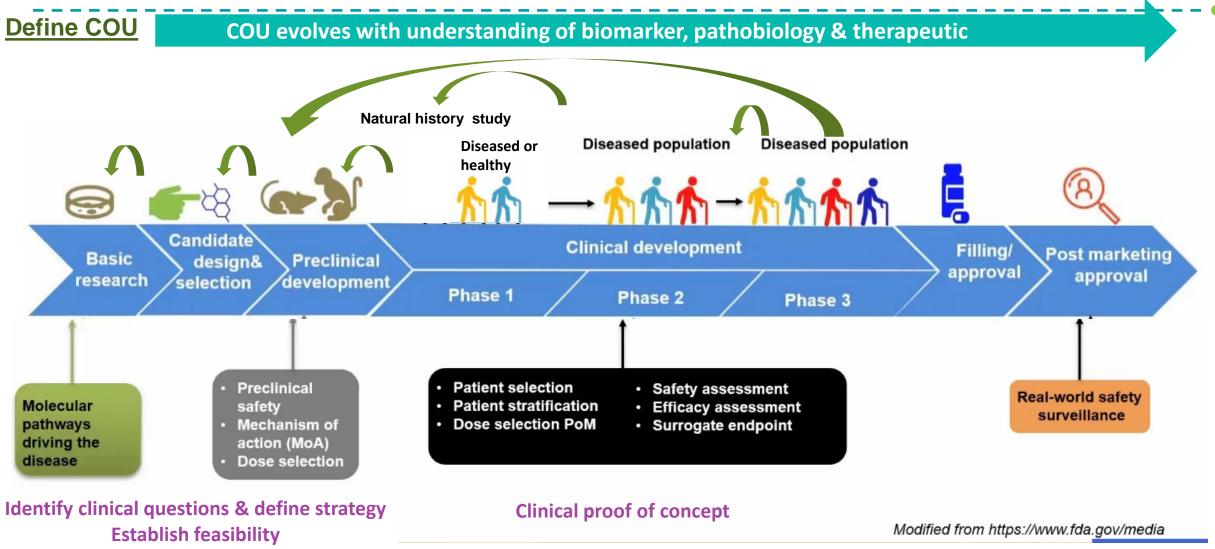
The **same biomarker** may be developed to address **several COU** (E.g., A PD biomarker may also serve as a surrogate endpoint if the data support this and regulatory requirements can be met)


Proof of Therapeutic Mechanism & Clinical Concept


Biomarkers provide critical insight into the effects of a drug on the underlying disease mechanism, and connect this with the therapeutic response in the individual patient

- **Proof of mechanism (PoM)**: The drug is hitting the target with the "expected" effect on the biology / marker
- Proof of concept (PoC): The mechanism of action of the drug is associated with clinical activity

RARE DISEASE CHALLENGE	BIOMARKER DELIVERABLES
Patient heterogeneity	 Address unifying underlying pathobiology on backdrop of diverse clinical presentation Clarify pathobiology & association to clinical presentation & response
<u>Pediatric populations</u> : limitations of standard tools (PROs, wearables)	 Objective measures of drug action Target engagement, PD, PoM
Slow, progressive diseases: Long trials to demonstrate clinical outcomes	 Early evidence of potential for disease modification Surrogate endpoints (at a minimum inform decision-making
Novel drug mechanisms	Accelerated test of therapeutic hypothesis & PoC


Example: Phenylalanine biomarker for phenylketonuria (PKU)

Biomarkers are an integral component of drug development

Preclinical proof of mechanism

Identify clinical sample sources

From: AAPS Biomarkers e-course 2022, Module 1

Early sourcing & careful use of clinical samples is critical

Sample sourcing through collaboration with patient advocacy groups, consortia and precompetitive alliances is extremely valuable

BIOLOGICAL & ASSAY FEASIBILITY

Nonclinical & healthy donor samples

DISEASE ASSOCIATION

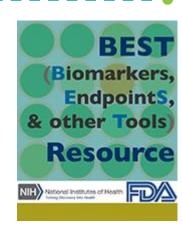
Single point untreated patient samples vs matched controls

CLINICAL UTILITY

Longitudinal untreated patient samples with clinical annotations

CLINICAL VALIDATION

Early phase clinical study samples, baseline vs on-treatment Select biomarker(s) for pivotal study


Establish biomarker association with disease pathobiology & response under therapeutic pressure

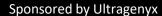
Assay development & triage to encompass biomarker strategy in clinical study(ies)

BEST Resource: Biomarkers, EndpointS and Other Tools

- A glossary of terminology and uses of biomarkers and endpoints in basic biomedical research, medical product development and clinical care
- Created by FDA-NIH Biomarker Working Group
- Publicly available at https://www.ncbi.nlm.nih.gov/books/NBK338449/
- BEST harmonizes terms and definitions and addresses nuances of usage and interpretation of among various stakeholders including:
 - Biomedical scientists
 - Translational and clinical researches
 - Medical product developers
 - Patient/disease advocacy groups
 - Government officials
 - Clinicians

Key elements of biomarker strategies

- Biomarkers can connect a therapeutic target with the underlying disease mechanism and clinical measurements of response
- Biomarkers can accelerate the development of novel, safe therapeutics in rare diseases
- Defining the clinical questions early in the program, & focus on context of use are critical to success
- Essential biomarker criteria address feasibility, clinical relevance and clinical utility
- Biomarker & sample acquisition strategies should be initiated as early as possible
- Biomarker development & qualification is highly cross-functional; collaborative teamwork is critical
- Working together across public-private partnerships and in pre-competitive analyses can significantly accelerate biomarker development in rare diseases


Rare Bootcamp™

Sponsored by Ultragenyx

Sponsored by Ultragenyx

Thank You

