

Human Cellular Models and Their Application in RARE Drug Development

Angels Almenar-Queralt, Ph.D. Project Scientist, UC San Diego aalmenar@ucsd.edu

Image credit: Surya Venogupal

Agenda

INTRODUCTION

OVERVIEW OF HUMAN CELL CULTURES

MODELING DISEASES IN BRAIN ORGANOIDS

CONCLUSIONS

1.1.1 ц I.,

111

~20,000 genes

Inaccessibility to Living Human Tissue

Limited Predictivity of Animal Models

- Species specific genetics
- > Do not fully recapitulate disease complexity
- Shorter lifespans
- Size differences
- Controlled and limited experimental conditions
- Ethical concerns

Low Predictivity:

Thalidomide Alzheimer's vaccine Traumatic brain injury Aspirin

Ex vivo Cultured Cells

A century ago	Immortalized Cell Lines	Primary Cultures
Roux: Neural plate of chicken embryos for a few days	Ex: HeLa cells	Limited lifespan
	<image/>	<image/>

Human Pluripotent Stem Cells – A Revolution

CRISPR – A Revolutionary Tool to Edit Genomes

2020- Nobel Prize in Chemistry

Emmanuel Charpentier & Jennifer Doudna

Must correct mutation in patient lines & Must create mutation in more than healthy donor line

Two-Dimensional (2D) hPSC-Derived Cultures

2D Cells as Platforms for Phenotypic Screenings

Limitations of the 2D hPSC-Derived Cultures

- Lack of tissue complexity
- Incomplete cellular maturation
- Homogeneity of cell populations
- Inability to model tissue biomechanics
- > Artifact-prone experimental conditions
 - Limited lifespan (weeks)

3D-Organoids Derived From Human Stem Cells

Cell Stem Cell

Sassai Lab 2008

Increasing Brain Complexity In Vitro

Tri-Assembloids – Where is the limit?

cortico-spinal-muscle circuit

Enhancing Maturity by Increasing Complexity

In vivo transplantation

Miniaturizing Organs on a Dish

Connecting Organs – Organoids-on-chip

The Muotri Lab Cortical Brain Organoids Recipe

Meet the Muotri Lab Cortical Brain Organoids

Complex Network Connectivity

M Rare Bootcamp™

Identifying Disease Phenotypes

Personalizing Therapies

M Rare Bootcamp™

Pitt-Hopkins Syndrome→ TCF4 Deficiency

Time (sec)

CDKL5 Deficiency Disorder (CDC)

Conclusions – Cellular Models

"All models are wrong, but some are useful" (George E.P. Box)

>40 neurological disorders modeled using organoids

- Only recapitulate pre-natal features
 - Reduced cellular complexity
 - > High variability
 - No blood brain barrier
- Missing systemic contribution

FDA Modernization Act 2.0 (2022): This bill allows an application for market approval for a new drug to use alternatives to animal testing including cell-based assays.

Rare Bootcamp™

Sponsored by Ultragenyx

Funding & Timeline in a Human Stem Cell Lab

\$150K Foundation \$150K Muotri Lab	\$150K Muotri Lab	\$1-1.5M R01/CIRM	>\$4M CIRM/Company
Complex experiments Phenotype Grant Application	Mechanism Proof-of-concept Grant Application	Confirmatory Publication Grant Application	Pre-clinical Therapies IND
	\$150K Foundation \$150K Muotri Lab omplex experiments Phenotype Grant Application	\$150K Foundation \$150K Muotri Lab omplex experiments Phenotype Grant Application	\$150K Foundation \$150K Muotri Lab\$1-1.5M R01/CIRM\$150K Muotri LabMechanism Proof-of-concept Grant ApplicationConfirmatory Publication

\$500 to culture 1 patient-skin fibroblasts \$10-20K to reprogram, QC, and establish one iPSC line \$15K to differentiate one iPSC line \$20K CRISPR-editing/line + SALARIES (25-50%) technician/(100%) postdoc or grad student

M Rare Bootcamp™

The Muotri Lab

THE SANFORD CONSORTIUM FOR REGENERATIVE MEDICINE, UC SAN DIEGO, CA

