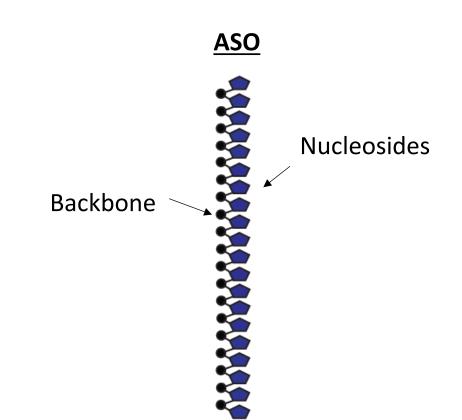
Therapeutic Modalities: Antisense Oligonucleotides

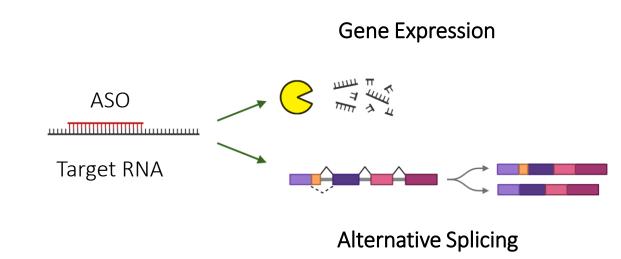
Scott V. Dindot, Ph.D. Professor & EDGES Fellow |Texas A&M University Executive Director Molecular Genetics |Ultragenyx Pharmaceutical

> Rare Bootcamp Ultragenyx Pharmaceutical November 13, 2024


Outline

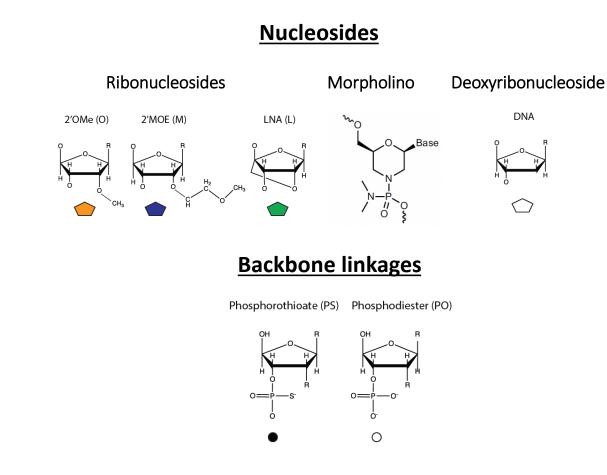
- Overview of Antisense Oligonucleotides (ASOs)
- ASO Design and Mechanisms of Action
- ASO Pharmacokinetics: The Basics
- ASO Nuances and Challenges
- ASOs vs siRNAs
- Conclusions and Future

ASO Overview


- Single-stranded oligonucleotide
 - Comprised of ribonucleosides and/or deoxyribonucleosides
 - 14-22 nucleotides long
- Chemically modified to protect the molecule from nucleases and enhance its pharmacological properties.
 - Synthesized on machine
 - FDA considers an ASO a drug (not biologic)

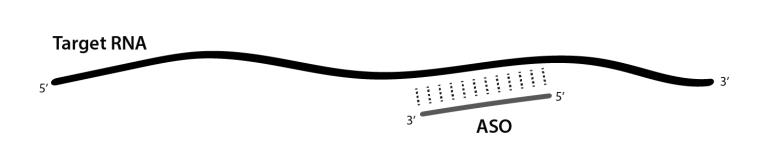
ASO Overview

- Binds to a target RNA via Watson-Crick base pairing
 - Highly specific
- Function
 - Downregulates or upregulates the expression of a target gene
 - Alters the splicing of a target gene to generate different RNA or protein isoforms

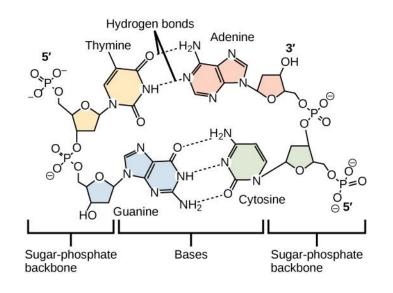

ASOs have been around for decades

1978 - ASO approach proposed 1989 - ASO Medicinal Chemistry 1990 – Optimal ASO length identified 1996 – 2'MOE Chemistry 1998 – LNA chemistry 1998 – Formiversen Approved 2001 – IT, ID, and aerosol dosing 2011 – SMA Clinical Trials 2013 – Mipomersen Approved 2016 – Nusinersen Approved 2016 – Eteplirsen Approved 2018 – Inotersen Approved 2019 – Valenosorsen Approved 2019 – FDA allows N-of-1 (Milasen) 2019 – Golodirsen Approved 2020 – Angelman Syndrome Clinical Trials (GeneTx/Ultragenyx, Roche, Ionis)

ASOs are chemically modified versions of RNA/DNA

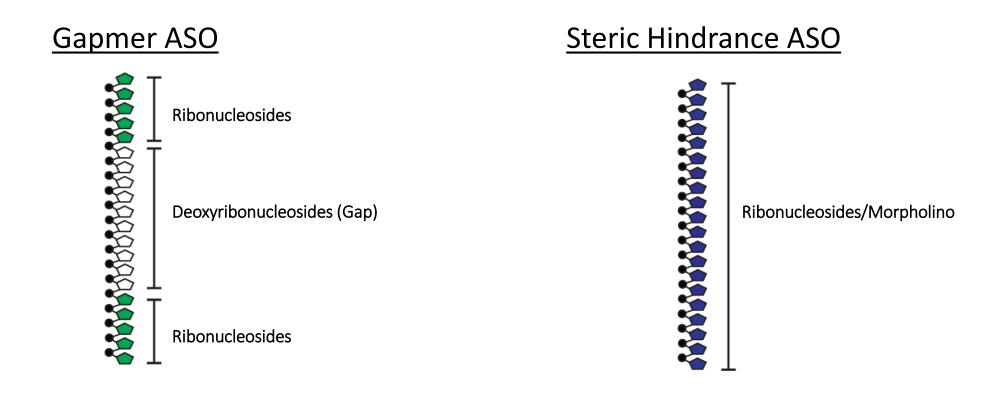

ASOs

Chemical Modifications


- Determine the mechanism of action
- Increase stability
- Enhance pharmacological properties

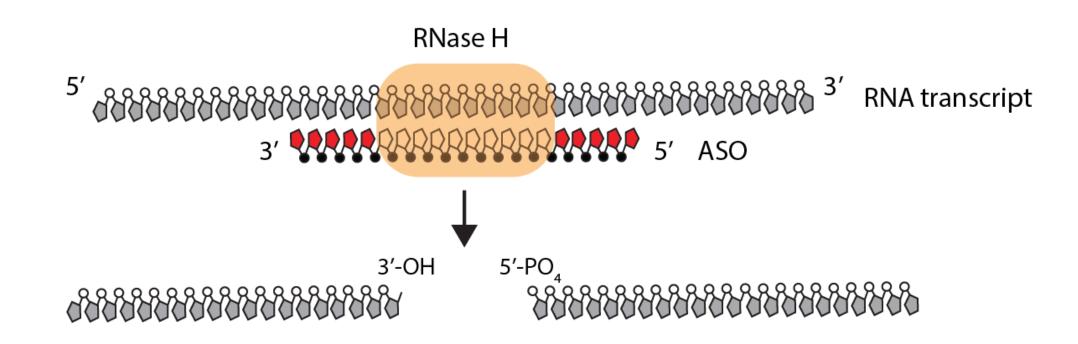
ASOs are specific to a target RNA via Watson-Crick base pairing

Bioinformatic analyses, likely replaced by artificial intelligence


Watson-Crick Base Pairing

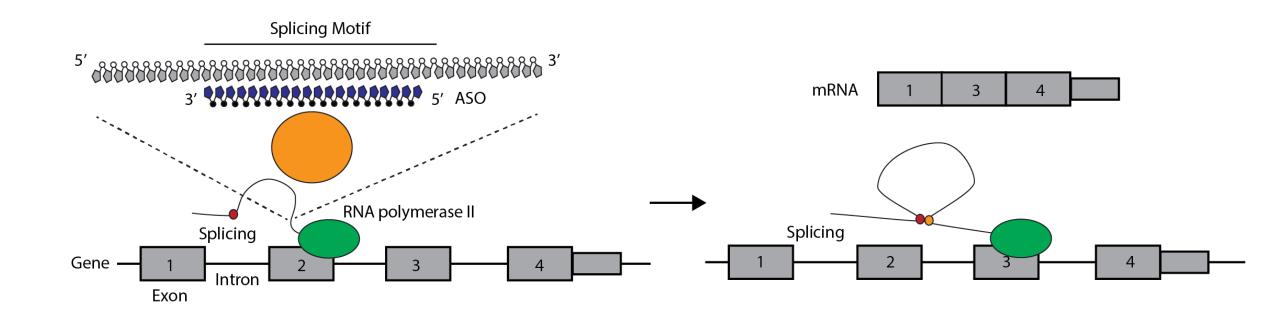
Adenine : Thymine/Uracil Guanine : Cytosine

The chemical structure of an ASO determines its mechanism of action



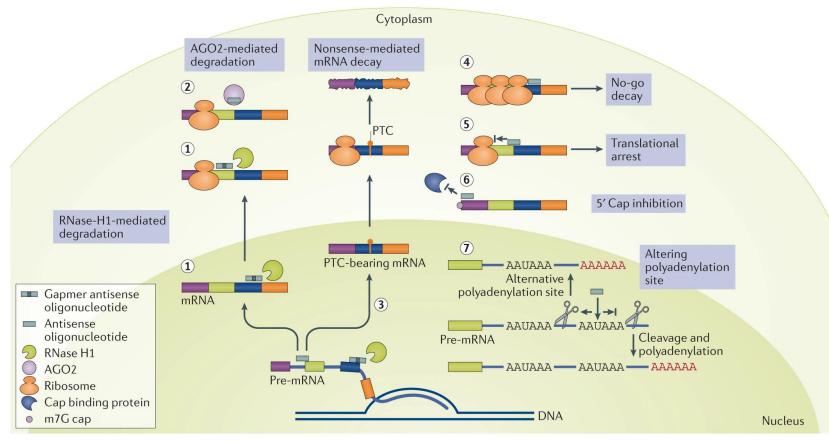
Induces degradation of target RNA

Blocks the binding of proteins or RNAs

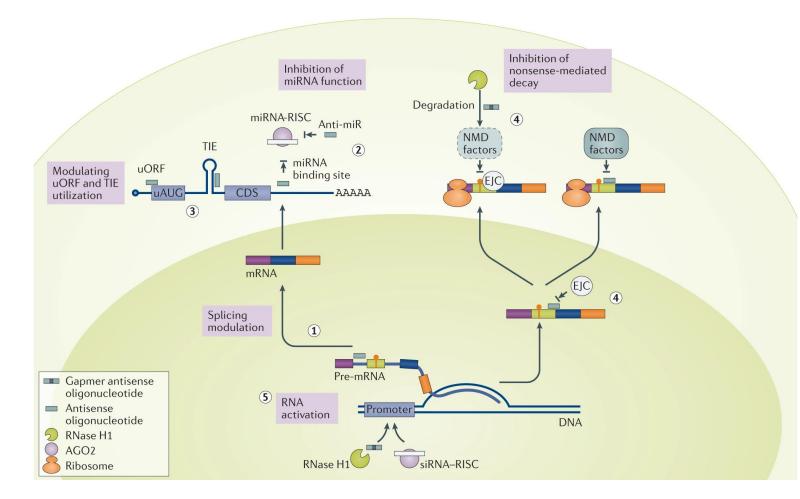


Gapmer ASOs induce the degradation of a target RNA

Steric Hindrance ASOs inhibit RNA-Binding Proteins and RNAs

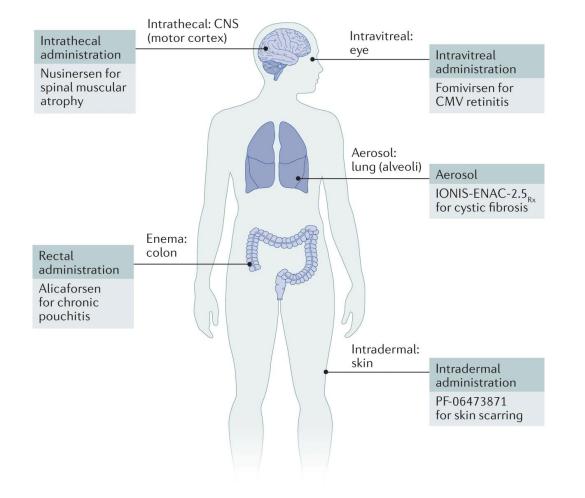


The mechanism of action of an ASO can vary in many ways


ASO-Mediated Repression of Gene Expression

Crooke ST, Baker BF, Crooke RM, Liang XH. Antisense technology: an overview and prospectus. Nat Rev Drug Discov. 2021 Jun;20(6):427-453. doi: 10.1038/s41573-021-00162-z. Epub 2021 Mar 24. PMID: 33762737.

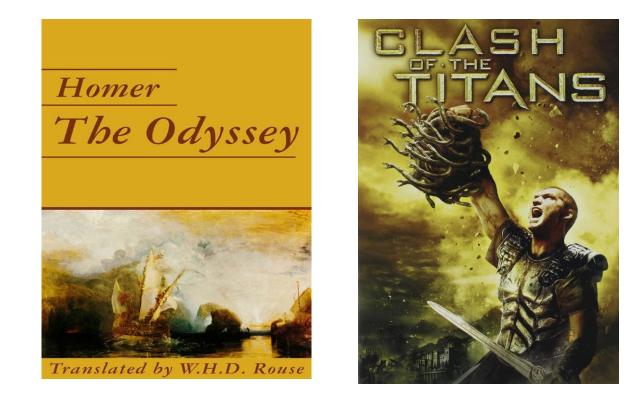
ASO-Mediated Upregulation of Gene Expression


Crooke ST, Baker BF, Crooke RM, Liang XH. Antisense technology: an overview and prospectus. Nat Rev Drug Discov. 2021 Jun;20(6):427-453. doi: 10.1038/s41573-021-00162-z. Epub 2021 Mar 24. PMID: 33762737.

ASO Pharmacokinetics: The Basics

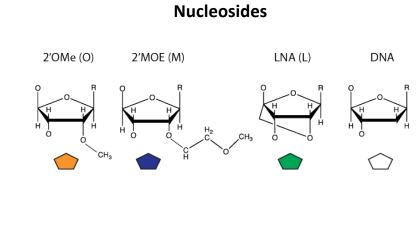
- ASOs are water soluble and do not require a lipofection agent to enter the cell.
 - gymnosis = naked delivery
- ASOs are taken up by all cell types via the endocytic pathway.
- IV administered ASOs distribute throughout the body, following the flow of blood.
 - ASOs do not cross the blood-brain barrier.
- CNS-targeted ASOs are delivered directly to the cerebral spinal fluid.
- ASOs can be conjugated for targeted organ delivery (GalNac [liver], Transferrin receptor brain).
- ASOs have a relatively long half-life (weeks months [chemistry dependent]).

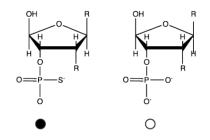
ASOs can be administered by different routes



Crooke ST, Baker BF, Crooke RM, Liang XH. Antisense technology: an overview and prospectus. Nat Rev Drug Discov. 2021 Jun;20(6):427-453. doi: 10.1038/s41573-021-00162-z. Epub 2021 Mar 24. PMID: 33762737.

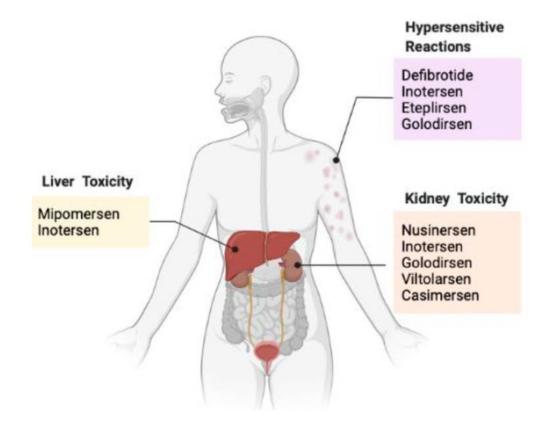
Developing an ASO is a journey


The pharmacological properties of an ASO are dependent on many factors and largely unknown.


Designing ASOs is complicated by an exponential number of sequence and chemistry combinations

4.0.PS.O	4.0.PO-1.0	4.0.PO-2.O	4.0.PS.M	4.0.PO-1.M	4.0.PO-2.M	4.4.PS.L	4.4.PO-1.L	4.4.PO-2.L
6.1.PS.O	6.1.PO-1.O	6.1.PO-2.O	6.1.PS.M	6.1.PO-1.M	6.1.PO-2.M	6.2.PS.L	6.2.PO-1.L	6.2.PO-2.L

Backbone Linkages


Phosphorothioate (PS) Phosphodiester (PO)

Dindot SV, et al. An ASO therapy for Angelman syndrome that targets an evolutionarily conserved region at the start of the UBE3A-AS transcript. Sci Transl Med. 2023 Mar 22;15(688):eabf4077. doi: 10.1126/scitranslmed.abf4077. Epub 2023 Mar 22. PMID: 36947593.

ASOs can be toxic

Alhamadani F, et al. Adverse Drug Reactions and Toxicity of the Food and Drug Administration-Approved Antisense Oligonucleotide Drugs. Drug Metab Dispos. 2022 Jun;50(6):879-887. doi: 10.1124/dmd.121.000418.

Minor changes to ASOs can have massive effects

In Vivo Evaluation of Candidate Allele-specific Mutant Huntingtin Gene Silencing Antisense Oligonucleotides

Amber L Southwell¹, Niels H Skotte¹, Holly B Kordasiewicz², Michael E Østergaard², Andrew T Watt², Jeffrey B Carroll³, Crystal N Doty¹, Erika B Villanueva¹, Eugenia Petoukhov¹, Kuljeet Vaid¹, Yuanyun Xie¹, Susan M Freier², Eric E Swayze², Punit P Seth², Clarence Frank Bennett² and Michael R Hayden¹

Based on all the ASOs tested:

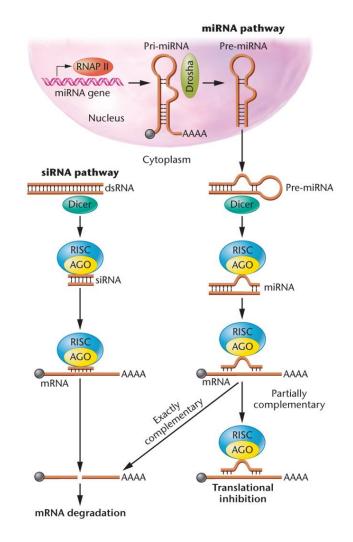
"we were unable to define the governing principles of ASO design..."

"recommend evaluation of multiple molecules to identify optimal ASO candidate drugs."

ASOs vs siRNAs

Small Interfering RNAs (siRNAs)

- Double-stranded oligonucleotide, comprised of ribonucleosides
- 20-31 nucleotides long
 - typically 20-22 nucleotides
- Synthetic version of microRNAs
- Function
 - Downregulates gene expression
 - Degradation of mRNA
 - Regulation of translation


Partial Modification (Onpattro®/Patisiran)		SS		5 G-0-0 -	A-0-0-A-A		D- D-O-O-A -D-	 3'
		AS	3 🕧		00000		000000	5
Partial M	odification	SS	5	0000	00000	606600		3
	QPI-1007)	AS		3	D-@-D-D-@		A A A A	5
				5 - 5 - CO				GalNAc
Full Modification (ESC)		SS	5' 🌘	-8-6-8-8-	A-C-A-C-U	- C-U-O-U-O- (0-0-0-0-0	-GalNAc 3
(Givlaari™/	Givosiran)	AS	3 ()-C-C	-0-0-0-0-	0-0-0-0-0	-0-0-0-0-0-0	D-@-@-@-@-D	GalNAc
								GalNAc
Full Modification		SS	5' 🔘	-0-0-C-0-	0-0-0-0-0 -0	- 0-0-0-6-0 -0	D-0-0-0-0-0-0-0	GalNAc 3
(Inclisiran/AL	_N-PCSsc)	AS	3. ()-()-()	-0-0-0-0-	0-0-0-0 -0	-0-0-0-0-0-0-0-0	-0-0-0-0	5'
Chandrad	Template	SS	5 0					3
	stry (STC)	AS	3	-				5
Chemistry (CrC)								5
Enhanced Stabilization Chemistry (ESC)		SS	5 🌒		0-0-0-0-0			3
		AS	3					5
			5'					3
Advanced ESC (example: DV18)		SS AS						
(exam	pie. DV16)	AS	3. 0.000					5
Advanced ESC		SS	5'	-0-0-0-0-	0-0-0-0-0		0-0-0-0-0-0	3
	ple: DV22)	AS	3 0-0-0					5
ESC Plu	us (ESC+)	SS	5 🔘	0000	0-0-0-0-0		0-0-0-0-0-0	3.
LUCTIC	10 (LOO.)	AS	3					5
	Υ.	SS	5 0-6	-0-0-0-0-				a 3
	AD1-3	AS						
Arrowhead								
	4.05	SS	5' 🔴	-0-0-0-0-				○-①- ② 3 [.]
	AD5	AS	3'		8-0-0-0-0		0-0-0-0-0-0	5'
	1			5				3
Silence		SS						
	l.	AS		3.				5
	Ĩ	SS		5				C-O-O-O-O
		AS	3' 🦲					6-0-0-0-Q
							3' 1	
		SS		5	0-0-0-0			6-0-0-6-0-0
		AS	3' 🧲					6-0-0-0-Q
Dicerna							3' †	0-0-0-0-0
		SS		5	0-0-0-0			
		AS	3 🥚					0-C-D-O-C-Q
							3' †	9-C-U-O-C-C
		SS		5	0-0-0-0			
		AS	3 🦲					6-C-D-O-C-Q
							3' † ni	*
	() = invert	ed deo	xyabasic	= DNA	• = 2'-F	= 2'-OMe	= = phospho	

O = without nucleoside base = idT/A

siRNA-Meditated Repression of Gene Expression

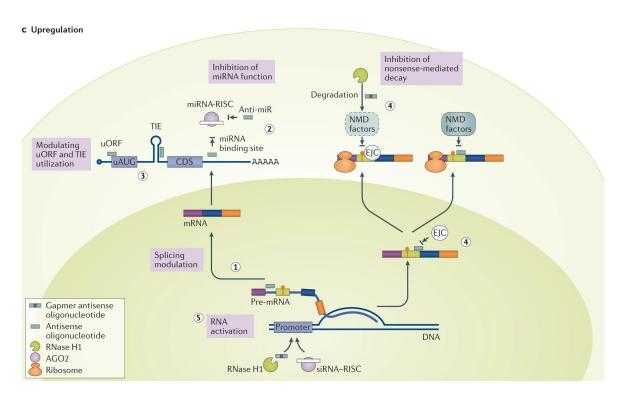
- Require transfection agent or conjugate (e.g., lipid, GalNac) to enter the cell
- Primarily function in the cytoplasm and not the nucleus

Conclusions

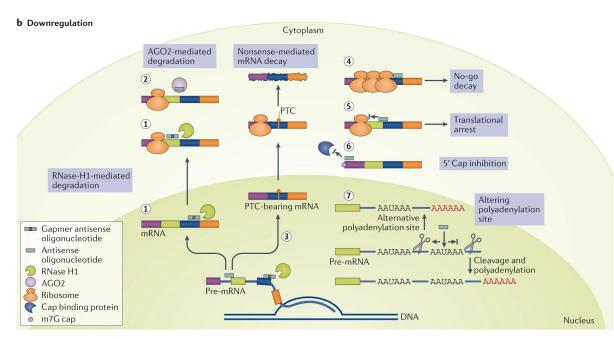
- ASOs and siRNAs are powerful modalities for developing diseasemodifying therapies.
 - Every gene and approach is different.
- The ASO research and clinical enterprise is expanding.
- The landscape of ASO therapies is rapidly evolving, with the number of both approved and developing ASO therapies increasing at an exponential rate.

The Future

- The principles governing the pharmacological and toxicological properties of ASOs are unclear.
 - Need for better bioinformatics/algorithms/artificial intelligence to design ASOs
- Delivery is the biggest challenge for ASOs and siRNAs.
 - The field is developing conjugates for targeted delivery of ASOs/siRNAs to organs and cells.
- New nucleic acid therapies will undoubtedly be developed.
 - Longer half-life, more potent, less toxic


Thank You!

Appendix


ASOs: Upregulation

Crooke ST, Baker BF, Crooke RM, Liang XH. Antisense technology: an overview and prospectus. Nat Rev Drug Discov. 2021 Jun;20(6):427-453. doi: 10.1038/s41573-021-00162-z. Epub 2021 Mar 24. PMID: 33762737.

- Steric hindrance ASOs
 - trigger alternative splicing of pre-mRNAs, leading to mRNAs without PTCs, thereby increasing the stability and levels of mRNAs induce cleavage of RNA by RNase H1
 - inhibit miRNA function can increase expression of the miRNA target genes
 - enhance translation by inhibiting translation suppression elements, such as upstream open reading frames (uORFs) and translation inhibitory elements (TIEs) within the 5' untranslated region (UTR)
- Gapmer ASOs
 - inhibit NMD
 - target promoter regions to enhance transcription

ASOs: Downregulation

Crooke ST, Baker BF, Crooke RM, Liang XH. Antisense technology: an overview and prospectus. Nat Rev Drug Discov. 2021 Jun;20(6):427-453. doi: 10.1038/s41573-021-00162-z. Epub 2021 Mar 24. PMID: 33762737.

- Gapmer ASOs
 - induce cleavage of RNA by RNase H1
 - cytoplasm = reduces mRNA level
 - nucleus = terminate transcription
 - induce AGO2-mediated RNA degradation, similar to siRNAs
 - cleave 5'-cap and 3'-polyA tails
- Steric hindrance ASOs
 - modulate splicing, generating mRNAs with premature termination codons, leading to nonsense-mediated decay
 - block ribosome scanning and arrest translation
 - bind to the 5'-end of a mRNA inhibiting the binding of translation initiation factors

